暑期學習視頻 作文 高一學習方法 高二學習方法 高三學習方法 高一學習計劃 高二學習計劃 高三學習計劃 初中視頻 高中視頻

高一數學復習方法

  來源:網絡  作者:未知 今日點擊:
站長推薦:名師直播答疑(免費觀看)!

  高一數學復習方法
 

  一.知識歸納:

  1.集合的有關概念。

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

  ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數集:N,Z,Q,R,N*

  2.子集、交集、并集、補集、空集、全集等概念。

  1)子集:若對x∈A都有x∈B,則A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)補集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,則? A ;

  ②若 , ,則 ;

  ③若 且 ,則A=B(等集)

  3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區別;(2) 與 的區別;(3) 與 的區別。

  4.有關子集的幾個等價關系

  ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

  ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集運算的性質

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  二.例題講解:

  【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:從判斷元素的共性與區別入手。

  解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}

  對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以M N=P,故選B。

  分析二:簡單列舉集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  = P,∴N P 又 ∈N,∴P N,故P=N,所以選B。

  點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。

  變式:設集合 , ,則( B )

  A.M=N B.M N C.N M D.

  解:

  當 時,2k+1是奇數,k+2是整數,選B

  【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為

  A)1 B)2 C)3 D)4

  分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。

  解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。

  變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為

  A)5個 B)6個 C)7個 D)8個

  變式2:已知{a,b} A {a,b,c,d,e},求集合A.

  解:由已知,集合中必須含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 .

  【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。

  解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

  ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

  ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為-2和1,

  ∴ ∴

  變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.

  解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

  ∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

  又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,m=-5

  【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>-2},且A∩B={x|1

  分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。

  解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

  綜合以上各式有B={x|-1≤x≤5}

  變式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

  點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。

  變式2:設M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有滿足條件的a的集合。

  解答:M={-1,3} , ∵M∩N=N, ∴N M

  ①當 時,ax-1=0無解,∴a=0 ②

  綜①②得:所求集合為{-1,0, }

  【例5】已知集合 ,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。

  分析:先將原問題轉化為不等式ax2-2x+2>0在 有解,再利用參數分離求解。

  解答:(1)若 , 在 內有有解

  令 當 時,

  所以a>-4,所以a的取值范圍是

  變式:若關于x的方程 有實根,求實數a的取值范圍。

  解答:

  點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。

高一數學復習方法:的相關文章
英語倒裝句型 :完全倒裝使用方法

完全倒裝句型 英語中的倒裝句型是一種語法手段,用于表示一定的句子結構或強調某一句子成分。倒裝句有兩種:完全倒裝和部分倒裝。所謂完全倒裝:就是將謂語動詞置于主語前。完全倒裝一般具有以下兩個條件:①謂語動詞是單個(即不帶情態動詞、助動詞或be)的不

《帶著小鎮上路》現代文閱讀方法指導

《帶著小鎮上路》現代文閱讀方法指導 我那時認為這一生大概只會做一件事:離開小鎮。 我不是在小鎮里過得不愉快,那里的水土很適合我,只不過村里人都說外面的世界很精彩,把離開小鎮當作出息。我選擇一個夏天離開,人們都在打瞌睡,我神不知鬼不覺地走了,不

高中數學裂項求和課堂實錄

高中數學裂項求和 在我們高中《數列求和》的補充內容中,一共有兩課時,第一節課 時講 倒序相加法、分組求和法、裂項相消法 ,并引申出求通項公式的迭加(乘)法,第二節課 重點演練 乘比錯位相減法 ,并補充求 通項公式的待定系數法 (形如 的數列。) ,裂

直線和圓的方程解題方法及技巧

題型一:直線和圓的方程解題過程中對“設而不求”解法技巧應用 分析: 利用“ OP ⊥OQ”求出m,問題可解 600)makesmallpic(this,600,1800);"> 名師點評: 在直線和圓的方程解題中,我們采用了對直線與圓的交點設“設而不求”的解法技巧,由于“ OP⊥OQ,”所

數形結合思想的思想方法

數形結合思想的思想方法 數形結合是中學數學中四種重要思想方法之一,對于所研究的代數問題,有時可研究其對應幾何的性質使問題得以解決(以形助數);或者對于所研究的幾何問題,可借助于對應圖形的數量關系使問題得以解決(以數助形),這種解決問題的方法

函數方程思想-重要數學思想

函數方程思想 函數方程思想就是用函數、方程的觀點和方法處理變量或未知數之間的關系,從而解決問題的一種思維方式,是很重要的數學思想。 1.函數思想:把某變化過程中的一些相互制約的變量用函數關系表達出來,并研究這些量間的相互制約關系,最后解決問題,

推薦學習視頻:高一、高二、高三視頻(注冊后免費學習20小時) (本文字數:2557)

關鍵詞: 高一數學,高一學習方法,高一數學學習方法,數學,高一
編輯:特約講師
彩猫彩票 e乐彩彩票网 | 9188彩票 | 趣彩网 | 号百彩票 | 快赢彩票 | 779彩票 |